Extensions 1→N→G→Q→1 with N=C2 and Q=C32×C3⋊D4

Direct product G=N×Q with N=C2 and Q=C32×C3⋊D4
dρLabelID
C3×C6×C3⋊D472C3xC6xC3:D4432,709


Non-split extensions G=N.Q with N=C2 and Q=C32×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C2.1(C32×C3⋊D4) = C32×Dic3⋊C4central extension (φ=1)144C2.1(C3^2xC3:D4)432,472
C2.2(C32×C3⋊D4) = C32×D6⋊C4central extension (φ=1)144C2.2(C3^2xC3:D4)432,474
C2.3(C32×C3⋊D4) = C32×C6.D4central extension (φ=1)72C2.3(C3^2xC3:D4)432,479
C2.4(C32×C3⋊D4) = C32×D4⋊S3central stem extension (φ=1)72C2.4(C3^2xC3:D4)432,475
C2.5(C32×C3⋊D4) = C32×D4.S3central stem extension (φ=1)72C2.5(C3^2xC3:D4)432,476
C2.6(C32×C3⋊D4) = C32×Q82S3central stem extension (φ=1)144C2.6(C3^2xC3:D4)432,477
C2.7(C32×C3⋊D4) = C32×C3⋊Q16central stem extension (φ=1)144C2.7(C3^2xC3:D4)432,478

׿
×
𝔽